牛计伟, 李晓恒, 季佳佳, 刘宁, 张振, 裴迎新, 施小明. 2016—2022年珠三角地区PM2.5中多环芳烃污染特征及健康风险[J]. 环境卫生学杂志, 2024, 14(5): 431-437, 447. DOI: 10.13421/j.cnki.hjwsxzz.2024.05.009
    引用本文: 牛计伟, 李晓恒, 季佳佳, 刘宁, 张振, 裴迎新, 施小明. 2016—2022年珠三角地区PM2.5中多环芳烃污染特征及健康风险[J]. 环境卫生学杂志, 2024, 14(5): 431-437, 447. DOI: 10.13421/j.cnki.hjwsxzz.2024.05.009
    NIU Ji-wei, LI Xiao-heng, JI Jia-jia, LIU Ning, ZHANG Zhen, PEI Ying-xin, SHI Xiao-ming. Pollution characteristics and health risk of polycyclic aromatic hydrocarbons in PM2.5 in the Pearl River Delta, China, 2016-2022[J]. Journal of Environmental Hygiene, 2024, 14(5): 431-437, 447. DOI: 10.13421/j.cnki.hjwsxzz.2024.05.009
    Citation: NIU Ji-wei, LI Xiao-heng, JI Jia-jia, LIU Ning, ZHANG Zhen, PEI Ying-xin, SHI Xiao-ming. Pollution characteristics and health risk of polycyclic aromatic hydrocarbons in PM2.5 in the Pearl River Delta, China, 2016-2022[J]. Journal of Environmental Hygiene, 2024, 14(5): 431-437, 447. DOI: 10.13421/j.cnki.hjwsxzz.2024.05.009

    2016—2022年珠三角地区PM2.5中多环芳烃污染特征及健康风险

    Pollution characteristics and health risk of polycyclic aromatic hydrocarbons in PM2.5 in the Pearl River Delta, China, 2016-2022

    • 摘要:
      目的 评价多环芳烃暴露的人群健康风险, 了解珠三角地区大气PM2.5及其中16种多环芳烃的污染特征和来源。
      方法 2016—2022年在广东省珠三角地区的广州、深圳、佛山及珠海市选10个区设置10个监测点, 每月10—16日采集环境空气样品, 测定PM2.5及其中16种多环芳烃含量, 分析多环芳烃污染来源, 使用BaP毒性当量法评价多环芳烃呼吸暴露途径的人群健康风险。
      结果 2016—2022年珠三角地区PM2.5逐年平均浓度(x±s)分别为(57.45±29.66)、(51.26±35.69)、(43.86±33.17)、(40.53±24.70)、(29.26±34.27)、(31.57±24.91)、(30.17±21.06)μg/m3, 呈下降趋势(Z=-29.83, P < 0.01), PM2.5中多环芳烃平均浓度(x±s)分别为(6.23±6.29)、(5.17±6.95)、(4.00±4.46)、(3.34±3.93)、(2.52±2.92)、(3.05±4.30)、(2.65±2.60) ng/m3, 浓度虽然降低近60%, 但下降趋势无统计学意义, 多环芳烃16种成分除萘(NAP)外均呈下降趋势(P < 0.05), 2018—2022年PM2.5中多环芳烃致癌效应健康风险CR值M(P25, P75)为5.35×10-7(2.54×10-7, 1.21×10-6), 自第69百分位数开始大于1×10-6, 第99百分位数为9.19×10-6, 均小于1×10-4
      结论 珠三角地区四城市大气PM2.5污染整体呈不断改善趋势, 四城市中临海的深圳和珠海市优于佛山和广州市, PM2.5与多环芳烃成分含量呈显著正相关, 逐月变化趋势基本一致。多环芳烃污染主要是本地源排放所致, 存在石化燃料燃烧、机动车尾气排放、石油挥发和有机物质燃烧等多重来源, 不同城市多环芳烃污染构成和来源并不完全一致, 且高温燃煤对多环芳烃浓度变化有重要影响。珠三角地区大气PM2.5中多环芳烃具有潜在致癌风险, 宜引起关注。

       

      Abstract:
      Objective To investigate population health risk of exposure to polycyclic aromatic hydrocarbons (PAHs), as well as the pollution characteristics and sources of atmospheric PM2.5 and 16 PAHs in the Pearl River Delta.
      Methods From 2016 to 2022, 10 monitoring points were set up in 10 districts of Guangzhou, Shenzhen, Foshan, and Zhuhai in the Pearl River Delta region of Guangdong Province, China. Ambient air samples were collected from the 10th day to the 16th day of each month to determine the concentrations of PM2.5 and 16 PAHs, and the pollution sources of PAHs were analyzed. The BaP toxicity equivalent method was used to evaluate the population health risk of respiratory exposure to PAHs.
      Results The mean annual concentrations of PM2.5 (x±s) in the Pearl River Delta from 2016 to 2022 were 57.45±29.66, 51.26±35.69, 43.86±33.17, 40.53±24.70, 29.26±34.27, 31.57±24.91, and 30.17±21.06 μg/m3, respectively, which showed a decreasing trend (Z=-29.83, P < 0.01). The mean concentrations of PAHs (x±s) were 6.23±6.29, 5.17±6.95, 4.00±4.46, 3.34±3.93, 2.52±2.92, 3.05±4.30, and 2.65±2.60 ng/m3, respectively, and although the concentrations of PAHs were reduced by nearly 60%, there was no statistical significance in the decreasing trend. All 16 PAHs except naphthalene showed a decreasing trend (P < 0.05). The median CR (P25, P75) of the carcinogenic effect of PAHs in PM2.5 from 2018 to 2022 was 5.35×10-7 (2.54×10-7, 1.21×10-6); it was greater than 1×10-6 from the 69th percentile and was 9.19×10-6 at the 99th percentile, all lower than 1×10-4.
      Conclusion There is a tendency of continuous improvement in atmospheric PM2.5 pollution in the four cities of the Pearl River Delta, and among the four cities, Shenzhen and Zhuhai have a better air quality than Foshan and Guangzhou. The content of PM2.5 is significantly positively correlated with that of PAHs, with a basically consistent changing trend month by month. Local emissions are the main sources of PAHs pollution, including fossil fuel combustion, vehicle exhaust emissions, petroleum volatilization, and organic matter combustion. There are certain differences in the composition and sources of PAHs pollution among cities, and high-temperature coal burning has an important impact on the change in the concentration of PAHs. PAHs in atmospheric PM2.5 have a potential carcinogenic risk and should be taken seriously.

       

    /

    返回文章
    返回