袁慧阁, 王艳华, 张丽雅, 张雪薇, 阿丽米热·阿不力克木, 周彩兰, 段化伟, 牛勇. 尿金属混合物与脂质氧化损伤的分子流行病学研究[J]. 环境卫生学杂志, 2023, 13(10): 713-723. DOI: 10.13421/j.cnki.hjwsxzz.2023.10.001
    引用本文: 袁慧阁, 王艳华, 张丽雅, 张雪薇, 阿丽米热·阿不力克木, 周彩兰, 段化伟, 牛勇. 尿金属混合物与脂质氧化损伤的分子流行病学研究[J]. 环境卫生学杂志, 2023, 13(10): 713-723. DOI: 10.13421/j.cnki.hjwsxzz.2023.10.001
    YUAN Hui-ge, WANG Yan-hua, ZHANG Li-ya, ZHANG Xue-wei, ALIMIRE·Abulikemu, ZHOU Cai-lan, DUAN Hua-wei, NIU Yong. Molecular epidemiological study of urinary metal mixtures and lipid oxidative damage[J]. Journal of Environmental Hygiene, 2023, 13(10): 713-723. DOI: 10.13421/j.cnki.hjwsxzz.2023.10.001
    Citation: YUAN Hui-ge, WANG Yan-hua, ZHANG Li-ya, ZHANG Xue-wei, ALIMIRE·Abulikemu, ZHOU Cai-lan, DUAN Hua-wei, NIU Yong. Molecular epidemiological study of urinary metal mixtures and lipid oxidative damage[J]. Journal of Environmental Hygiene, 2023, 13(10): 713-723. DOI: 10.13421/j.cnki.hjwsxzz.2023.10.001

    尿金属混合物与脂质氧化损伤的分子流行病学研究

    Molecular epidemiological study of urinary metal mixtures and lipid oxidative damage

    • 摘要:
      目的 利用混合污染物统计学模型, 探讨金属混合物中致机体脂质氧化损伤的主要毒性组分。
      方法 选取768名钢铁冶炼厂工人为研究对象。电感耦合等离子体质谱法测定尿液中钒(V)、铬(Cr)、锰(Mn)、镍(Ni)、砷(As)、锶(Sr)、镉(Cd)、铅(Pb)、硒(Se)、钴(Co)、铜(Cu)和锌(Zn)12种金属浓度; 酶联免疫吸附法测定尿8-异前列腺素F2α(8-iso-PGF2α)浓度; 采用MDA-硫代巴比妥酸加合物法测定尿中丙二醛(MDA)浓度。应用贝叶斯核机器回归(BKMR)、分位数g计算回归, 分析尿金属与尿8-iso-PGF2α和尿MDA水平的关联。
      结果 BKMR分析结果显示, 当所有尿金属浓度均处于第50百分位数(P50)时, 金属混合暴露的总效应使尿8-iso-PGF2α和尿MDA水平升高(P < 0.05)。当所有尿金属浓度处于P50与处于P25相比, 尿8-iso-PGF2α水平增加36.72%、尿MDA水平增加34.24%。金属导致脂质氧化损伤的主要作用组分为Se、Cd、Zn, 当其它尿金属分别固定在P25P50P75时, 尿Se浓度每增加一个四分位间距, 尿8-iso-PGF2α水平分别增加30.7%、35.4%和41.2%;尿MDA水平分别增加35.3%、42.8%和54.7%。分位数g计算结果显示, 金属混合物水平每增加25%, 尿8-iso-PGF2α和尿MDA水平分别升高63.05%和61.23%。
      结论 金属混合暴露可能会引起机体脂质氧化损伤标志物水平升高, 其中Se、Cd、Zn效应更为显著。

       

      Abstract:
      Objective To explore the main toxic components of metal mixtures in urine responsible for lipid oxidative damage based on the statistical model of mixed pollutants.
      Methods A total of 768 participants in a iron and steel smelting plant were recruited and their urine was collected. Urinary concentrations of vanadium(V), chromium(Cr), manganese(Mn), nickel(Ni), arsenic(As), strontium(Sr), cadmium(Cd), lead(Pb), selenium(Se), cobalt(Co), copper(Cu), and zinc(Zn) were determined by inductively coupled plasma mass spectrometry. The concentration of urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) was measured by ELISA. The concentration of urinary malondialdehyde (MDA) was determined by the MDA-thiobarbituric acid adduct method. Bayesian kernel machine regression (BKMR) and quantile g-computation were performed to analyze the associations of urinary metals with urinary 8-iso-PGF2α and MDA levels.
      Results BKMR analysis showed that the total effect of mixed metal exposure increased the levels of 8-iso-PGF2α and MDA in urine (P < 0.05) when all urinary metal concentrations were at the 50th percentile (P50). Urinary 8-iso-PGF2α level increased by 36.72% and urinary MDA level increased by 34.24% when all urinary metal concentrations were at P50 as compared with P25. The main components in metal mixtures responsible for lipid oxidative damage were Se, Cd, and Zn. When other urinary metals were fixed at P25, P50, and P75, urinary 8-iso-PGF2α levels increased by 30.7%, 35.4%, and 41.2% and urinary MDA levels increased by 35.3%, 42.8%, and 54.7% with each interquartile range increase in urinary Se. Quantile g-computation showed that 25% increase of the metal mixture levels resulted in 63.05% increase of urinary 8-iso-PGF2α and 61.23% increase of urinary MDA, respectively.
      Conclusion Exposure to metal mixture increases the levels of lipid oxidative damage, and the effects of Se, Cd, and Zn are more significant.

       

    /

    返回文章
    返回